1) Unidad, Richter, and Fetters [*Macro.* **48** 6638 (2015)] draw connections between the packing length, p, and certain rheological transitions they have found in polymer melts. Unidad describes three regimes seen in Figure 1 below: 1.) Rouse behavior for $M < M_c$; 2.) Reptation with constraint release and contour fluctuations between M_c and M_r ; and 3.) Pure reptation behavior for high molecular weights $M > M_r$.

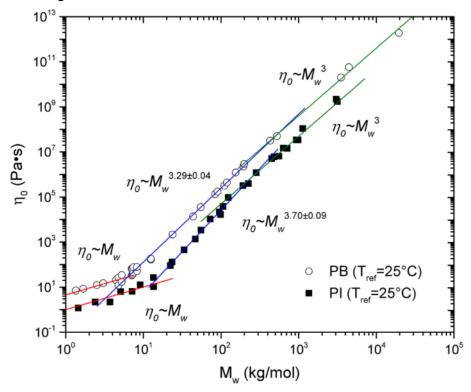


Figure 1. Experimental data for the zero-shear viscosity as a function of molecular weight of polybutadiene (PB) and polyisoprene (PI) melts. Data are obtained from various sources^{9,11,12} and show the three scaling regimes. Lines show the different power law fits for each regime.

- a) Give an equation that defines the packing length.
- b) The entanglement molecular weight, M_e , is determined by the plateau modulus, $G_0 = \rho RT/M_e$. Derive this equation from the Gaussian probability function and explain why M_e is related to the plateau modulus.
- c) Unidad relates M_c and M_r from Figure 1 with M_e using, $M_c = M_e[p^*/p]^{0.65}$ and $M_r = M_e[p^*/p]^{3.9}$, where p is the packing length, and p* is a constant of about 12 Å. What happens to the behavior seen in Figure 1 as p approaches p*? Can p be larger than p*? Explain.
- d) Unidad describes the tube diameter, a, as "the end-to-end distance of an entanglement strand" citing Doi and Edwards. Explain this definition of the tube diameter. What happens to the tube at long times, $t > \tau_{entanglement}$. How is $\tau_{entanglement}$ affected by M_w?
- e) Three parameters on the order of 1 nm are used to describe local polymer structure, the tube diameter, a, the packing length, p, and the Kuhn length, l_K . Explain what the Kuhn length is and how it relates to the persistence length, l_P .

2) The figure below by Wilding, Müller, and Binder shows a phase diagram for a polymer solution.

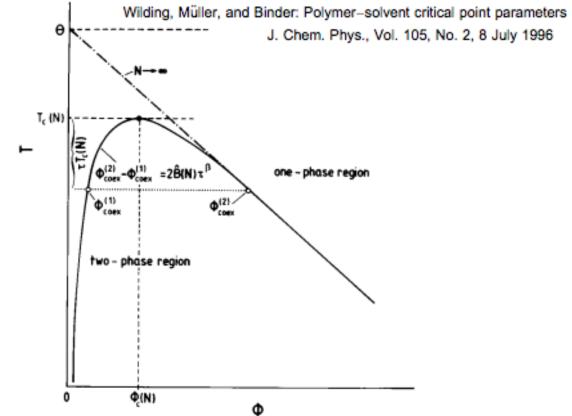


FIG. 1. Schematic phase diagram of a polymer solution in the space of the temperature T and the volume fraction ϕ . The coexistence curve separates a dilute solution of collapsed chains [at $\phi_{coex}^{(1)}$] from a semidilute solution of overlapping chains [at $\phi_{coex}^{(2)}$]. These two branches of the coexistence curve merge at a critical point $T_c(N)$, $\phi_c(N)$. For $N \rightarrow \infty$ the critical point merges with the Θ point of a dilute polymer solution $[T_c(N \rightarrow \infty) \rightarrow \Theta, \phi_c(N \rightarrow \infty) \rightarrow 0]$ and the unmixing transition has a tricritical character. At $T = \Theta$, the chain con/Egurations are ideal Gaussian coils, while their structure at $T_c(N)$ is nontrivial.

- a) Give an equation that describes the behavior of Figure 1.
- b) How are the critical temperature and critical composition determined from the equation of part a?
- c) Give an equation for the overlap concentration, ϕ^* . How would ϕ^* impact the phase diagram shown in Figure 1?
- d) Explain what the caption means when it mentions that the chain in the collapsed state is Gaussian while in solution it is an expanded coil. Why is the structure "non-trivial" at the critical point?
- e) Is it possible to have a thermodynamically stable *dilute* polymer solution below the theta temperature? Why does the theta temperature "have a tricritical character"?